If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=5+9H-16H^2
We move all terms to the left:
-(5+9H-16H^2)=0
We get rid of parentheses
16H^2-9H-5=0
a = 16; b = -9; c = -5;
Δ = b2-4ac
Δ = -92-4·16·(-5)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{401}}{2*16}=\frac{9-\sqrt{401}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{401}}{2*16}=\frac{9+\sqrt{401}}{32} $
| 13.2=z-6.5 | | 5=5+9t-16t^2 | | 9.032=-25.1a | | 3+48q=24 | | 5=5+9t-16t | | k^2−4k+1=−5 | | 7d-(-10)=87 | | 7x+(10x+34)=180 | | −8+10v=8v+1+9 | | 7x+(10x+34)+23x=180 | | B=-8+2b | | 7-5m=17-6m | | 4m=37-5 | | 2.4/1.4=7.2/k | | 16-3nn=4 | | x(2-x)(3x+3)=0 | | 3+9t=5+7t | | x/2+4=-8 | | -11+-3h=-13 | | 6(3x)+2=41 | | 5x+5=2x=14 | | 180-40-x=x | | 6(3x)=41 | | 5x+5=2x*14 | | -2-2n=4 | | 9k+11=83 | | 2f=14+6 | | 4x-8+6x-19=63 | | (2x+4)(x+2)=2x^2+4x+16 | | 1/p=3/12 | | 8z-13=11 | | 2(3-2t)=2t-30 |